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ABSTRACT: Process parameters play a highly significant role in the final quality of parts produced using dynamic injection molding.

Many researches have made great efforts in obtaining an optimum set of process parameters for improving molded part qualities

with various optimization methods. However, this work has failed to provide sufficient information to adjust process parameters in

the face of variable environmental conditions and various injection machines to ensure robust, high-quality injection moldings. Cur-

rent conditions are too cumbersome and require technologists to perform repeated, detailed optimization procedures on the mass

production plant floor. An offline method for prediction of process windows is proposed in this article. The process window is signif-

icant for robust manufacturing, and optimization of process parameters. Considering that it is an irregular region in a multi-

dimensional space respecting to process parameters, numerical simulations based on DOE method were designed to offline build rela-

tionships between process parameters and part qualities. Then the simulation results were classified as positive or negative class,

thereby yielding simulation sample data. Finally, the process window was verified using an SVM classifier and a set of simulation

samples. Injection molding of an experimental production plate using various process parameters was conducted to verify the reliabil-

ity of the predicted process window. The results show that, within tolerable deviations, the predicted window of experimental parts is

in accordance with verification experiments. The proposed method demonstrates an ability to rapidly obtain a suitable set of process

parameters for achieving consistency in part quality with low cost and high efficiency. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci.

2014, 131, 40804.
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INTRODUCTION

Injection molding is by far the primary processing method for

manufacturing plastic products. The quality of molded parts is

directly dependent on material characteristics, mold designs,

process parameters and the performances of the injection

machine.1 Determination of process parameters is the final step

before the part is manufactured. At that point, it is too expen-

sive to modify the mold, the material of choice cannot be

altered and the chosen injection machine has been selected. In

this case, there is still time to optimize the process parameters

to ensure that the molded part is qualified, the production effi-

ciency is maximized, and the manufacturing process is

adequate.

However, the procedure for determining process parameters is

an extraordinarily challenging task for two reasons. The first is

that there are so many influencing factors to be considered,

such as the structure of a mold, the rheology of a polymer

melt, and the limits of the injection machine. The second can

be generally attributed to the intricate and nonlinear relation-

ships between the quality of a part and its corresponding pro-

cess parameters. Unfortunately, determination of process

parameters is still a skilled art on the production floor. This

usually involves preliminary conjecture of a set of testing

parameters on the basis of personal experience, followed by fab-

rication of a test molding of the desired part. Subsequently the

quality of the product is evaluated to adjust the relevant process

parameters, which leads to a second test molding. For example,

a short shot might attribute to a slow injection velocity, or a

low injection pressure. As a result, these two parameters would

be moderately increased over those used in the previous mold-

ing. This trial and error method is repeated until the desired

product can be routinely produced. Obviously, this approach is

time-consuming and the quality of molded part depends pri-

marily on the personal experiences of the particular molding

engineer.
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In the past decade, various optimization methods have been

proposed to establish the best process parameters, including

analytical and artificial intelligence methods.2–11 Lucyshyn et al.2

proposed a physical model for a quality control concept in

injection molding based on theoretical derivation. Galantucci

and Spina3 and Chen et al.4 optimized process parameters by

combining simulation tools and DOE. Bozdana and Eyercioglu5

constructed a frame-based, modular and interactive expert sys-

tem. Chen et al.6 established a soft computing model for opti-

mizing multiple-input and multiple-output process variables

working towards an optimization objective based on the prod-

uct quality and dimensional precision. Yarlagadda and Khong7

developed a hybrid neural network system to predict the injec-

tion time and pressure in injection molding. Petrova and

Kazmer8 integrated the neural networks and expert knowledge

database to construct a hybrid neural network model for online

controlling the molding quality. Zhou and Turng9 presented an

integrated simulation-based optimization system for implement-

ing the iterative optimization of an injection molding process

without artificial intervention, using a surrogate model based

on the Gaussian process approach. Kwong et al.10 designed a

case based reasoning system to obtain proper molding parame-

ters using expert systems. Shelesh-Nezhad and Siores11 devel-

oped an intelligent system for obtaining the magnitude of

process parameters by applying rule-based and case-based rea-

soning techniques.

These studies have focused on obtaining optimized process

parameters to improve the quality control of injection molded

parts. However, what is the objective of optimizing process

parameters? What does an optimum set of process parameters

mean for injection molding? In which production activities will

these optimization methods help technologists? As is well

known, the manufacturing process of injection molding is cycli-

cal and characterized by high efficiency. Process parameters

must be robust enough to ensure that the manufacturing pro-

cess is not disrupted by fluctuation of environments (e.g. ambi-

ent temperature), injection machines, or materials. The concept

of robust injection molding is now popular and is considered to

be as important as quality control.12 Thus the objective of opti-

mizing process parameters should be not limited to the quality

control of injection molded parts. An optimum set of process

parameters means that the molded part is within acceptable tol-

erances, the production efficiency is maximized and the manu-

facturing process is robust. Previous research succeeded in

finding online optimization methods for a few product parame-

ters, such as dimension, weight and warpage. These can be opti-

mized in a specific manufacturing environment. However, the

aspect of robust manufacturing is ignored. Indeed, determining

procedure of process parameters is required in all production

activities of injection molding. When the mold is designed or

fabricated, a set of process parameters must be found for per-

forming a trial shot to test the mold. In a pilot plant, ranges of

process parameters are evaluated for determining the optimum

conditions. During mass productions, process parameters are

optimized by minor adjustments to accommodate a particular

injection machine and the environment. A close to optimum set

of process parameters is required in the first two activities but

must be further adjusted to accommodate varied environments

and different injection machines. The aforementioned optimiza-

tion method appears to be too exacting for the mass production

stage, technicians are reluctant to perform repeated, demanding

optimization procedure as the manufacturing environment

varies, or the injection machine is changed.

Therefore, defining a suitable procedure for determining the best

process parameters means (1) ascertaining ranges of process

parameters that will create a robust, stable manufacturing process.

And (2) seeking an optimum set of process parameters to accom-

modate a particular injection machine and environment. The first

can be achieved using an offline prediction that employs simula-

tion tools, a design of experiment method (DOE), fitting methods

etc., which consider mold structures and material characteristics.

The latter can be accomplished through a concise online optimiza-

tion such as expert knowledge-based reasoning and optimization

algorithm, according to manufacturing environment and injection

machine’s performance, taking advantage of offline prediction

results. Huang and Lin13 developed an innovative searching

method for setting the robust process parameters based on a

regression model. Kazmer et al.14 derived a process window from

quantitative process models using a novel multidimensional clip-

ping algorithm. Kazmer and Mundhra15 subsequently developed a

new analytical procedure based on the extensive simplex method

that derives the global process window for an arbitrary number of

process parameters and quality specifications. Kulkarni proposed a

method for obtaining the process window using contour plotting

on DOE results.12 Berti and Monti16 proposed a new approach that

enables a robust optimization of the injection molding process,

based on the integration of numerical simulations. In these

researches, the boundary in which the part can molded robustly

has not been calculated or only represented by several linear planes.

Simulation tools have been proven to be useful for offline evalu-

ation of a set of process parameters for a given mold.17,18 Bour-

don17 developed a strategy to determine the optimum process

parameters based on simulation calculations. Nagarsheth18 com-

bined a statistical and flow simulation technique to obtain per-

missible molding conditions. To ascertain the ranges of process

parameters, we need a lot of simulation analyses. However, an

accurate simulation requires the part be meshed into more than

ten thousands elements, which means we need more time for

simulation analysis. It is unacceptable.

This article focuses on the offline prediction of process parame-

ters ranges that will produce a robust and stable manufacturing

process. Design of experiment (DOE) is employed to reduce the

number of simulation analyses. The process window is fitted

using a support vector machine (SVM) classifier by evaluation of

simulation results from a small quantity of analyses. Conse-

quently, the process window, which is an irregular region, can be

implicitly defined by the SVM classifier and simulation samples.

STRATEGIES FOR PREDICTING THE PROCESS WINDOW

For an experienced injection molding engineer, once the prod-

uct material type and mold structure are confirmed, the opti-

mized process parameters can be located in a zone where

acceptable parts are molded without defects. The zone of
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process parameters is called process window.15,19,20 It is repre-

sented by a set of boundaries that define a window-like shape,

as illustrated in Figure 1, in which injection speed and melt

temperature are considered as process parameters. Outside of

the illustrated process window, molded parts will be unaccept-

able due to defects such as sink, flash, or short shot. When the

process parameters are close to the center of this window, the

quality of the part will be less influenced by the variation of the

shop floor environment, or fluctuations in the injection

machine. Thus a robust and stable manufacturing process can

be maintained. Kulkarni12 further divided the process window

into aesthetic, dimensional and control process windows and

developed a procedure for determining the process window

employing a DOE method.

The process window is significant for robust manufacturing, as

well as the optimization of process parameters. There is little

doubt that the potential optimum process parameters would be

positioned in the process window. If the process window can

be established prior to employing a process optimization

method, the optimization procedure would be simplified. How-

ever, there are a large number of process parameters involved

and intricate and nonlinear relationships exist between these

and the quality of the molded part.21 The process window is an

irregular region in a multi-dimensional space of process param-

eters that presents a window-like shape. It is a difficult task to

precisely describe such an irregular region using a mathematical

or a descriptive form.

It is unrealistic to simultaneously consider all the parameters of

every phase. Consequently, it is far more reasonable to establish

an acceptable process window for a process stage, such as injec-

tion, or packing, rather than a full process window for all the

process parameters.20 In entire molding process, final product

quality relies primarily on the filling and packing processes. The

packing stage is considered in this article. Packing pressure,

melt temperature and mold temperature are selected as the key

parameters. These significantly affect the rheology of the poly-

mer melt, pressure in the mold cavity, and the density distribu-

tion of the molded part. Thus, the process window is defined in

a three-dimensional space of packing pressure, melt temperature

and mold temperature.

The designed workflow of predicting a process window can be

divided into following steps:

� STEP 1: Establishing initial ranges of process parameters. Ini-

tial ranges define the maximum boundary box of the process

window and can be approximately estimated. An initial range

for a typical process parameter is given according to the rec-

ommended values from the material supplier or from empiri-

cal values. For the packing stage, the initial range of packing

pressure can be estimated from the maximum injection pres-

sure, the weight of molded part, the size of gate and the fam-

ily of the polymer. The initial ranges of melt and mold

temperatures are usually provided by the polymer supplier.

� STEP 2: Performing a set of numerical simulations based on

DOE. To decrease the number of process simulation analyses

and simultaneously consider the coverage of the process

parameters, several sets of process parameters are generated

from the DOE, according to the initial range of process

parameters. Following this, filling analyses with designed pro-

cess parameters are performed using simulation tools.

� STEP 3: Evaluating simulation results and calculating qualita-

tive indicators. Each set of designed process parameters is

quantitative evaluated from the filling simulation results,

such as flow front temperature, sheer stress and so on. The

corresponding quality indices are selected as the constraint

condition. If the simulation results satisfy all the above condi-

tions, they are classed as positive samples. Otherwise, they

are classed as negative samples. Thereby sample data can be

obtained which will be applied to train a SVM classifier for

establishing the process window.

� STEP 4: Training of a SVM classifier using sample data from

evaluations of simulation results. Traditional fitting methods,

such as artificial neural network (ANN), are unsuitable for

the present situation, because the number of sample data

from simulation is relatively small. Compared with ANN, the

support vector machine is superior for this situation, because

of the small sample classification and determination of the

parameters of a predetermined nonlinear model based on the

structural risk minimization principle.

� STEP 5: Establishing the boundary of the process window

and optimized process parameters. Although the boundary of

the process window can be obtained from calculation of the

SVM classifier by interpolation of process parameters, it is

recommended that the process window be represented by the

SVM classifier and sample data. SVM directly predicts

whether a set of process parameters is in the process window

or not. The center point of the process window is thought to

be robust for molding, and can be regarded as providing the

optimized process parameters.

KEY ALGORITHMS

Simulation Analysis Based on DOE

DOE techniques have been employed to help molding techni-

cians understand the injection molding process. Among the var-

ious DOE techniques, the Taguchi method has been widely used

for injection molding. It is a method that employs an orthogo-

nal table to arrange and analyze multifactor experiments. Tagu-

chi parameter design obtains a random sample of future

Figure 1. A typical process window (melt temperature vs. injection

speed).
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conditions with the orthogonal array. It has been used to

uncover subtle interactions among process variables and deter-

mine optimal process parameters for injection molding with a

minimum number of test runs and cost.21

In most applications, Taguchi parameter design helps one to bet-

ter understand process characteristics and investigate how inputs

affect responses. It is based on statistical backgrounds and an

orthogonal array is representative of all inputs. Therefore,

numerical experiments are performed with only process parame-

ters in the scheduled orthogonal array, reducing the number of

simulation analyses based on a statistical analysis.

It is conjectured that there are no interactions between injection

factors, because the shear heat is negligible in the packing-

holding phase and the mold temperature is influenced primarily

by the coolant and cooling time. Thus the packing pressure,

melt temperature and mold temperature are three factors con-

sidered in Taguchi parameter design and there is no interaction

between them. The levels of melt temperature and mold tem-

perature can be determined from the ranges recommended by

the polymer material suppliers. The level of packing pressure is

directly related to the weight of molded part, the rheology of

polymer melt and the injection pressure and it can be deter-

mined from experience.

Subsequently, filling analyses with designed process parameters

are performed using simulation tools. The flow of the poly-

mer melt plays a very crucial role in the injection molding

process. Filling simulation has been developed for decades so

that it is relatively mature. There are several commercial soft-

ware tools which can perform a filling simulation with a

high accuracy. The filling simulation of injection molding

process can be organized into three categories: mid-plane

models, 2.5-dimensional models, which is also called surface

models or dual domain models, and full three-dimensional

models. In recent years, full three-dimensional simulations are

available to be performed on a personal computer, attributing

to the development of high performance computer and paral-

lel computing technique. However, they still require a large-

scale computation and the exacting restrictions on meshing.

The 2.5D models based on the Hele-Shaw approximation are

still a popular and effective solution to flow analysis for a

part with a thin shell shape. Generally speaking, up to 75%

of all plastic products are thin shell shaped. Filling analyses

based on 2.5 models are employed in our study.

Evaluation of a Simulation Result

As previously mentioned, the process window is defined as a feasible

process zone in which a part can be molded with a designated quality.

The quality is usually defined as dimensional tolerance, mechanical

property, and optical performance etc. Dependent variables, such as

melt temperature, melt pressure, melt-front advancement, maximum

shear stress etc., which depend on not only the process parameters

but also the material and mold configuration used, can reflect the

characteristics of the resin being processed. These variables, which are

commonly referred to as process control variables for quality control,

have been widely studied and reported in various publications.22

Therefore, the quality of a molded part can be predicted or evaluated

from these process control variables. On the other hand, these process

control variables can be obtained directly from simulation results.

Thus, the criteria of part quality based on process control variables

can be derived from simulation results, defined as follows:

1. The maximum shear stress smax should not exceed the per-

missible shear stress slimit of polymer melts, i.e., smax< slimit

2. The maximum shear rate vmax should not exceed the per-

missible shear rate vlimit of polymer melts, i.e., vmax < vlimit.

3. The temperature of flow front T ti
front should not be far below

or far exceed the temperature Tmelt of melt at the entrance,

i.e., Tmelt 2T1 < T ti
front < Tmelt 1 T2, where Tmelt is the tem-

perature of melt at the entrance, T ti
front is the temperature of

flow front at time ti, T1, and T2 are temperature allowed toler-

ance between flow front and melt at the entrance.

T1 5 T2 5 10�C is recommended for most applications.

4. Short shot is not allowed, thus the number of filled mesh

elements Ninj is equal to the total number of mesh elements

Ntotal, i.e., Ninj 5 Ntotal

5. The packing pressure Pinj should not exceed the ability Pmax

of the injection machine, i.e., Pinj < Pmax

6. The clamp force Fclamp should not exceed the permissible

one Fmax, i.e., Fclamp < Fmax.

These evaluation criteria determine whether a set of selected

process parameters is feasible. If a simulation result satisfies all

of these conditions, it together with its corresponding process

Figure 2. Dimensions of the plate part.

Figure 3. The measured rheology of PPH-T03. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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parameters is classed as a positive sample, with a rank 11. Oth-

erwise, it is classed as a negative sample, with a rank 21.

It should be noted that quality criteria are not unique and

depend on the definition of the process window. The process

window, limited by the cited quality criteria, is defined as a fea-

sible process zone in which a part is molded without flash,

short shot, sinks, internal voids and burning mark. It is similar

to the aesthetic process window defined in reference.12

Calculation of a Process Window

The process window can be obtained by calculating contour plots

of qualitative indicators related to two factors,12 or from a train-

ing of simulation samples. In most studies,23,24 Artificial Neural

Network (ANN) was used to predict how the quality was affected

by process parameters. Although, ANN is a valuable machine

learning modeling tool, providing sufficient, rich data for model-

ing the process’ nonlinear relationships, it relies on empirical risk

minimization.25 Alternatively, SVM is motivated by statistical

learning theory led to a class of algorithms characterized by the

use of kernels, the absence of local minima, the sparseness of the

solution and the capacity control obtained by acting on the mar-

gin. Recent research revealed that SVM had better performance

than ANN when the sample data was small or untrustworthy.26

Thus the SVM classifier is very suitable for predicting the process

widows, owing to the non-linear relationships between process

parameters and the quality of molded part, a lack of simulation

samples, and influences by the accuracy of the simulation.

The problem of classification consists of estimating a function f:

RN!{61} using l independent and identical distributed input-

output training data (x1, y1), . . .,(xl, yl), � RN3{61}. x is a

vector of process parameters, namely packing pressure, melt

temperature and mold temperature. 11 represent the quality of

molded part is acceptable, conversely 21 means unacceptable.

The SVM classifier can fit noise and outliers leading to poor gen-

eralization, thus a hard margin classifier is no longer adequate.

C-SVM classifier, in which a penalty term has been introduced to

generate a soft margin, is employed. The classifier attempts to

separate the data by minimizing the objective function:

Minimize
Xl

j51

aj2
1

2

Xl

i51

Xl

j51

aiaj yiyjKðxi; xjÞ

Subject to
Xl

i51

aiyi50

and C � ai � 0; i51; . . . ; l:

(1)

where ai is a non-negative Lagrange multiplier. C is a penalty

parameter. K represents a kernel function which is positive

define function RN 3 RN to RN that defines an embedding of

input patterns into feature vectors.

The nonlinear decision function is:

f ðxÞ5sgn
Xl

i51

ai
�yiK ðxi; xÞ1b�

 !
; (2)

where x is a set of process parameters needed to be predicted

whether it is in the process window or not.

Radial basis kernel function (RBF) is employed as the kernel

function. RBF is defined as:

Kðxi; xjÞ5exp ð2cjjxi2xj jj2Þ c > 0; (3)

where c is a kernel parameter.

It should be noted that the penalty parameter C represents the

importance of the inputs, while the kernel parameter c reflects

linear mapping from input parameters into the feature vectors.

C and c can be independently searched with an exponential

interval (C 5 2210, 229, . . .210, c 5 2210, 229, . . .210). C 5 1024

and c 5 0.0625 in our study.

Once the SVM classifier is trained with simulation samples, the

quality of the molded part can be predicted by a given set of

process parameters. The boundary of the process window can

be obtained from calculation of the SVM classifier by interpola-

tion of process parameters. There are many methods that can

be used to find the best process parameters if relationships

between process parameters and part quality are known. These

include genetic algorithm (GA), particle swarm optimization

Table I. Factors and Their Levels of the Orthogonal Array

Factor Description Level 1 Level 2 Level 3 Level 4 Level 5

A Melt temperature (�C) 220 (A1) 230 (A2) 240 (A3) 250 (A4) 260 (A5)

B Mold temperature (�C) 20 (B1) 30 (B2) 40 (B3) 50 (B4) 60 (B5)

C Packing pressure (MPa) 15 (C1) 30 (C2) 45 (C3) 60 (C4) 75 (C5)

Table II. Classifications of Simulation Samples

No.
Factor and
level xi Class yi No.

Factor and
level xi Class yi

1 A1B1C1 21 14 A3B4C1 21

2 A1B2C2 11 15 A3B5C2 11

3 A1B3C3 11 16 A4B1C4 11

4 A1B4C4 21 17 A4B2C5 21

5 A1B5C5 21 18 A4B3C1 11

6 A2B1C2 21 19 A4B4C2 11

7 A2B2C3 11 20 A4B5C3 11

8 A2B3C4 11 21 A5B1C5 21

9 A2B4C5 21 22 A5B2C1 11

10 A2B5C1 21 23 A5B3C2 11

11 A3B1C3 11 24 A5B4C3 11

12 A3B2C4 11 25 A5B5C4 21

13 A3B3C5 21
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algorithm (PSO).24,27 We argue that the center point of the pro-

cess window is a reasonable choice, because confidence level of

the predicted window cannot be confirmed until an actual

molding of a part is produced. This is because there are too

many uncertainties concerning the polymer material, mold,

injection material and environment.

A CASE STUDY

To demonstrate the procedure and algorithms for predicting the

process window, a case study is presented in this section. A

plate part with a thickness of 3 mm was prepared, as shown in

Figure 2. It was designed with a varied cross section in the flow

length direction in order to obtain a variation in injection pres-

sure. A fan gate is located at one end of the plate and the mold

has two symmetrical cavities. The resin used in the experiment

was a general polypropylene branded as PPH-T03 produced by

China Petroleum Chemical Industry Co., Ltd. The recom-

mended range of melt temperature and mold temperature were

220 to 260�C, 20 to 60�C, respectively. The weight of molded

plate was estimated to be 65 g, and the range of packing pres-

sure was from 1 MPa to 90 MPa determined from experience.

The rheology property of a polymer has a great influence on its

filling behavior and the accuracy of a filling analysis depends on

facticity of the rheological parameter. The rheology of a poly-

mer is complicated and its viscosity varies dramatically with

shear rate and temperature. Two materials belonging to the

same class as the subject polymer, but from different manufac-

turers might produce a profound discrepancy in their rheology

properties. Thus, the viscosity of the material used in this case

was measured and rectified before the numerical simulation was

performed. The rheology of PPH-T03 was measured using a

capillary rheometer, as shown in Figure 3. It can be seen that

viscosity of PPH-T03 is more sensitive to shear rate than tem-

perature, and the sensitivity to temperature decreases while

shear rate increases.

As previously mentioned in Strategies for Predicting the Process

Window section, packing pressure, melt temperature and mold

temperature are considered as process parameters for the pack-

ing stage. The injection speed, packing time and cooling time

were 35%, 25 s and 20 s, respectively. The switchover position

from injection to packing was set at the position where the melt

volume reached 95% of the whole cavity.

Initially, an orthogonal array L25(53) with three factors and five

levels was employed, as listed in Table I. The levels of the factors

were determined according to estimated ranges of the three pro-

cess parameters, and they are encoded for convenience of

expression, for example, B3 denotes the level 3 of factor B, i.e.

mold temperature of 40�C.

Subsequently, 25 filling analyses with different process parame-

ters were carried out using the simulation tool, according to the

orthogonal array L25(53), as listed in Table II. For example,

A4B3C1 indicates a filling analysis with a melt temperature of

250�C, a mold temperature of 40�C and a packing pressure of

15 MPa. All filling analyses were accomplished in 7.8 min on a

personal computer with an Intel (R) Core (TM) i7-2600 3.4

GHz processor and 8 GB RAM.

Analytical results were evaluated using the established criteria of

part quality, which are described in Section “Evaluation of a

Simulation Result.” If the results of an analysis satisfied all crite-

ria, the corresponding row in the orthogonal array is a positive

sample marked as 11; otherwise is negative one marked as 21.

As a result, a total of 25 samples were obtained, including 14

positive samples and 11 negative samples. Classifications of the

simulated samples are listed in Table II.

Then, samples from simulation results could be trained by a

SVM classifier. The input-output training data were (x1, y1), . . .,
(x25, y25), � R3 3 {61}. xi is the vector of i-th normalized

packing pressure, melt temperature and mold temperature in

Table II, yi is the class from evaluation of corresponding simula-

tion results. The penalty parameter C and the kernel parameter

c were set to 1024 and 0.0625 respectively by a search with an

exponential interval. The accuracy of cross-validation reached

up to 96% and the prediction accuracy was 80% for 20 inde-

pendent testing samples, which means the achieved classification

hyperplane trained by the SVM can classify the test samples as

positive or negative with a high reliability.

To give an intuitive glance at the process window, the bounda-

ries of the process window have been obtained from calcula-

tions using the SVM classifier by interpolation of process

parameters, as shown in Figure 4. The process window is

depicted as a zone in a three dimensional space relative to pack-

ing pressure, mold temperature and melt temperature. It

denotes the space including all positive samples and represents

a collection of process parameters which can be used to success-

fully mold the desired part. The boundary of the process win-

dow has been smoothed for a clear display. An upper and a

lower limit surfaces of packing pressure relative to the mold

and melt temperatures are obtained. The space of positive sam-

ples is located between the upper and lower limit surfaces. The

space of negative samples is separated by the process window.

It can be seen that packing pressure has a great effect on the

quality of the molded part while mold temperature and melt

Figure 4. The predicted process window. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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temperature play relatively small roles. This also can be intui-

tively concluded from the rheological properties of polypropyl-

ene, as shown in Figure 3. An exceeded clamp force or a flash

might be encountered when the packing pressure is beyond the

upper limit. Conversely, a short shot might occur when the

packing pressure is less than the lower limit. It appears that the

process window is an irregular region in a multidimensional

space relative to the process parameters in injection molding

and attributed to the rheology of polymer melt and complex

structures of mold cavity. It is obvious that the two limit surfa-

ces are curved and they are difficult to be described in a mathe-

matical or a descriptive form. Therefore, it is recommended

that the process window is directly represented by a SVM classi-

fier and simulation samples. Once the process window is deter-

mined, the range of a parameter can be acquired while holding

the other two constant. For example, the range of feasible pack-

ing pressure is 9.9 to 69.4MPa when the melt temperature is

260�C and mold temperature is 30�C. Thereby the range of fea-

sible packing pressure can be predicted while melt temperature

and mold temperature are defined in the trained SVM classifier.

VERIFICATION AND DISCUSSION

In order to verify the reliability of the predicted process win-

dow, the plate part was molded with different melt temperature,

mold temperature and packing pressure. The injection machine

was a BSIII-150 with a maximum clamp force 150 ton, manu-

factured by Borch machinery Co., Ltd. The mold temperature

was controlled by a temperature controller STM-910-W, manu-

factured by ShiNi plastic technologies, Inc. The actual melt tem-

perature and mold temperature were measured using a

handheld temperature meter Z251/2, manufactured by Hasco

Hasenclever GmbH Co.

A sequence of injection moldings was carried out to find the feasi-

ble ranges of packing pressure while mold temperature and melt

temperature were held constant. A part with any aesthetic defect,

such as short shot, sink mark, or flash, was regarded as unaccept-

able. The process parameters adapted to mold this part were con-

sidered to be out of the process window. The implementation

details of the experiments were as follows. First, the melt tempera-

ture and mold temperature were set to specific values respectively,

and their actual values were then measured using the handheld

temperature meter. The melt temperature was the average value of

three mold shots. The mold temperature was an average value of

measured temperatures from five points on the mold surface, as

marked in Figure 5(a). The temperatures were considered to be sta-

ble until the actual mold temperature and melt temperature

attained the set values within a tolerance of 60.5�C respectively.

The injection velocity, V/P switch point and cooling time were in

accordance with simulations. Then we set the packing pressure to a

small value and began molding. The packing pressure was

increased in a small increment and recorded at points where the

cosmetically acceptable part was molded, without any shorts or

sinks. The recorded pressure was the lower limit of packing pres-

sure. The packing pressure continued to be increased and was

recorded at the point where there was evidence of an unacceptable

molded part with defects of flashes or burn marks. This recorded

pressure was the upper limit of packing pressure. The lower and

upper limit bracketed the feasible range of packing pressure on the

precondition of a given melt and mold temperature. The melt and

mold temperature were modified according to Table III, and the

previously mentioned molding steps were repeated. The verifica-

tion experiment was continued until all the combinations of the

melt and mold temperatures listed in Table III were used. A part

with short shot at a packing pressure beneath the lower limit, and

the other one with flash shot molded at a packing pressure beyond

the upper limit, both were shown in Figure 5(b,c) respectively.

Twelve ranges of packing pressure contrasting with the pre-

dicted ranges of packing pressure were obtained from the

Figure 5. Verification experiment: (a) mold temperature measurement; (b) a part with short shot molded at a packing pressure beneath the lower

limit; (c) a part with flash shot molded at a packing pressure beyond the upper limit. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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Table III. Comparisons of Packing Pressure Range by Prediction and by Experiment

No.
Melt temp.
(� C)

Mold temp.
(�C)

Feasible range
of packing pressure
by experiment (MPa)

Feasible range of packing
pressure by prediction (MPa)

1 220 30 28–66 25.3–64.5

2 220 50 23–61 19–56.8

3 230 20 33–63 33–61

4 230 40 23–62 23.9–63.1

5 230 60 21–57 23.9–49.1

6 240 30 24–63 20.4–66.6

7 240 50 22–56 20.4–56.1

8 250 20 17–67 12.7–71.5

9 250 40 15–58 14.8–63.1

10 250 60 13–54 7.8–54.7

11 260 30 13–62 9.9–69.4

12 260 50 11–57 7.8–58.2

Figure 6. Comparison of feasible packing pressure range by prediction and experiment: (a) mold temperature 5 40�C; (b) mold temperature 5 50�C; (c)

melt temperature 5 240�C; (d) Melt temperature 5 250�C. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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verification experiments as listed in Table III. The predicted

ranges of packing pressures were calculated by substituting the

corresponding melt temperatures and mold temperatures into

the trained SVM classifier. At the same time, slices of the pre-

dicted process window in Figure 4 were made at the given melt

or mold temperature. The intersecting curves between cut

planes and the upper/lower limit surface were plotted, as well as

the feasible ranges of the packing pressure from the experi-

ments, as shown in Figure 6.

As shown in Table III and Figure 6, the upper limit and lower lim-

its of the packing pressure, obtained either from the experiments

or by the prediction calculations, slightly descend with increments

of melt or mold temperature. This can be attributed to the lower

viscosity and a better fluidity of the polymer melt when the melt

or mold temperature increases. The predicted upper and lower

boundaries of the packing pressure are close to the experimental

results. The maximum deviation between the predicted and experi-

mental upper boundary is 7.9 MPa when the melt and mold tem-

perature are 230�C and 60�C respectively. And the maximum

deviation between the predicted and experimental lower boundary

is 5.2 MPa when the melt and mold temperature are 250�C and

60�C, respectively. The mean absolute errors of the predicted

upper and lower boundary are 3.3 MPa and 2.6 MPa, respectively.

These deviations might be due primarily to the accuracy of the

simulation tools. There are many hypotheses in filling numerical

simulations, such as the homogeneity of the polymer melts, no

flow resistance existed between the mold wall and polymer melts.

These can be substantiated from the evidence that the predicted

ranges are all lower than the experimental ranges. This might be

attributed to a lower pressure drop resulting from simulated calcu-

lations rather than the actual injection molding. In addition, the

number of simulation samples, the fitting precision of the SVM

classifier, and the discrepancies between actual cosmetic defects

and criteria of part quality based on process control variables all

contribute to these deviations.

Nevertheless, these deviations are relatively small and are tolera-

ble for engineering applications. The predicted process window

is useful for determining the actual optimum process parame-

ters. For example, for robust injection molding, a reasonable

choice is to set the process parameters to values as near as pos-

sible to the center curve obtained by prediction, as shown in

Figure 6. The upper limit and lower limit can also be used as a

reference in adjustment of the parameters.

Kulkarni proposed a method for obtaining the process window using

contour plotting on DOE results.12 In a contrast, a two dimensional

process window respecting to mold temperature and packing pres-

sure is obtained using this method, as shown in Figure 7. The dark

area denotes the process window. The upper limit is a line which

passes two DOE points marked with a positive class, and the lower

limit is another parallel line which only passes one DOE point with

a positive class. The melt temperature is 250�C, as same as in Figure

6(d). The feasible ranges of packing pressure are compared with the

experimental results listed in Table III. Compared with Figure 6(d),

the boundary of this process window is straight and it does not well

in coincidence with the nonlinear boundary obtained by the experi-

ment. Errors between the prediction and the experiment are rather

too larger than that in Figure 6(d). This might be caused by that the

three referenced points for contour plotting are limited to a slice

plane where the melt temperature is 250�C and other DOE points at

different mold temperatures are out of consideration. As a result,

only several process windows on which slice planes existed DOE

points can be obtained by this method.

A statistical experiment had been performed to verify robustness

of the predicted process window. The weight variation of parts

was selected as an assessment of robust injection, defined as:

d5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=ðn21ÞÞ

Xn

i51
ðwi2�w Þ2

q
�w

3100%; (4)

where d, wi, �w and n are the weight variation, the weight of the

i-th part, the average weight and the number of molded parts

respectively. All parts were molded with a melt temperature

240�C and a mold temperature 30�C. Five packing pressures

were chosen in a range of 23.9 MPa to 63.1 MPa, which is from

boundaries of the predicted process window, as listed in Table IV.

Figure 7. Comparison of feasible packing pressure range by contour

plotting and experiment, melt temperature 5 250�C. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table IV. Statistical Results of Part Weights with Different Packing Pressures

Packing pressure (MP) Mean weight (g) Max. weight (g) Min. weight (g) St. dev. (g) Weight variation (%)

23.9 62.36408 62.65 62.18 0.140146 0.225

33.7 63.4849 63.72 63.31 0.113767 0.179

43.5 64.18653 64.34 64.08 0.077792 0.121

53.3 66.34571 66.56 66.15 0.110678 0.167

63.1 71.75429 72.14 71.16 0.16761 0.234
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Fifty parts were molded with each packing pressure and then

measured by a PL202-S electronic balance with precision of 0.01

g manufactured by METTLER TOLEDO Co., Ltd. The weight

distributions of all molded parts are shown in Figure 8, and the

statistical results are listed in Table IV and depicted in Figure 9.

It is not unexpected that the average part weight grows with

increasing packing pressure, because more melts are packed into

the cavity with a higher pressure. However, the weight variation of

parts is neither monotonically decreasing nor monotonically

ascending with increasing packing pressure. It first decreases and

then ascends, and reaches a minimum value while the packing

pressure is 43.5 MPa, which locates at the center of the predicted

process window. The weight variation of parts becomes great when

the packing pressure is set closer to the upper/lower limit. For

example, it reaches 0.234% when packing pressure is 63.1 MPa,

increased by 46.22% in contrast to 43.5 MPa. Therefore, it might

be helpful for maintaining a robust injection molding to select a set

of parameters near the center of the predicted process window.

CONCLUSIONS

The development of a process window determines the feasible ranges

of process parameters and is meaningful for robust injection molding.

The process window is an irregular region in a multi-dimensional

space of process parameters. It is a difficult task to precisely describe

and calculate such an irregular region in a mathematical or a descrip-

tive form. In this study, a novel methodology was proposed for pre-

dicting a process window. Numerical simulations based on a DOE

method were designed to build relationships between a set of process

parameters and part qualities. The process window was predicted

using a SVM classifier and a set of simulation samples, simultaneously

fulfilling computational efficiency and prediction accuracy. Injection

molding of experimental plate with various process parameters was

carried out to verify the reliability of the predicted process window.

The results of the verification experiment showed that simulation

tools can be used for offline evaluation of a part by qualities pro-

cess control variables from simulation results. A combination of

DOE and simulations improves computation efficiency. The non-

linear and multidimensional process window can be accurately

described by a SVM classifier and a set of simulation samples. The

predicted window of an experimental part is in accordance with

verification experiments within tolerable deviations. The presented

method for prediction of process windows shows a potential abil-

ity to help in determination of process parameters. For instance,

the center curves of a predicted process window can be a reasona-

ble choice for robust injection molding, and the boundaries can

also be used as references for adjustment of process parameters.

In contrast to barely obtaining an optimum set of process

parameters by various optimization methods in many studies,

this work demonstrates the development of a successful offline

prediction of process windows for robust injection molding.

The proposed method shows an ability to help technologists

rapidly obtain a suitable set of process parameters for achieving

consistency in part quality with low cost and high efficiency.

This is, especially useful in variable environments with fluctuat-

ing injection machines on the plant floor. Further work is

needed to improve the confidence of the predicted process win-

dows by increasing the simulation accuracy and elaborating on

the quality criteria for simulation results.
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